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Resonant response of harbours: an 
equivalent-circuit analysis 
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The surface-wave response of a harbour to a prescribed, incident wave is cal- 
culated on the hypotheses of shallow-water theory, an ideal fluid, and a narrow 
mouth, M .  An equivalent electrical circuit is constructed, in which the incident- 
wave displacement in M appears as the input voltage and the flow through M 
appears as the input current. This circuit contains a radiation impedance, Z,, 
which comprises resistive and inductive terms, and a harbour impedance, Z H ,  
which comprises an infinite sequence of parallel combinations of inductance and 
capacitance that bear a one-to-one correspondence with the natural modes of 
the closed harbour, together with a single capacitor, which corresponds to the 
degenerate mode of uniform displacement and dominates the response of the 
harbour as a Helmholtz resonator. Variational approximations to Z H  and 2, 
are developed. The equivalent circuit exhibits parallel resonance at  the resonant 
frequencies of the closed harbour, w,, and series resonance at a second set of 
frequencies, On, where 0, J. w, > 0 and 0, J. 0 as M + 0; 0, corresponds to the 
Helmholtz mode. A narrow canal between the coastline and the harbour is 
represented by a four-terminal network between 2, and 2,. It is shown that 
narrowing the harbour mouth and/or increasing the length of the canal does not 
affect the mean response of the harbour to a broad-band, random input except 
in the Helmholtz mode, but that it does increase significantly the response in 
that mode, which may dominate tsunami response. The general results are 
applied to circular and rectangular harbours. The numerical calculation of 8, 
for an arbitrarily shaped harbour is discussed. 

1. Introduction 
We consider (see figure 1) the surface-wave response of a harbour to a pre- 

scribed, incident wave in an exterior half-space on the hypotheses of linearized, 
shallow-watertheory, anideal fluid, and anarrowmouth (see below). The elements 
of this important engineering problem are reasonably well understood, but the 
synthesis is complicated in detail (see Miles & Munk 1961; Hwang & Tuck 1970; 
Carrier, Shaw & Miyata 1970; Lee 1971; Garrett 1970). It therefore appears 
worthwhile to invoke the equivalent-circuit techniques that have proved so 
efficient in attacking analogous problems in acoustics and electromagnetic 
theory. These techniques offer significant advantages in practice: (i) the sub- 
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242 J. W. Miles 

problems of external radiation, channel coupling, and internal resonance may 
be attacked separately; (ii) the equivalent-circuit parameters may be expressed 
as homogeneous, quadratic forms that may be simply approximated without 
solving the complete boundary-value problem; (iii) observed values (including 
those from model experiments) of dominant parameters, such as resonant fre- 
quencies, may be incorporated in preference to, or in place of, theoretical values; 

.. 

.. .. .. .. .. .. .. 

FIGURE 1. Schematic diagram of harbour opening on straight coast line; &, and are, 
respectively, the incident, specularly reflected, and scattered waves. 

(iv) empirically determined dissipation parameters (resistances) may be in- 
corporated; (v) analogue computation, both conceptual and electrical, may be 
invoked to expedite understanding of the resonant response. 

Referring to figure 1, we consider a harbour H that opens to the sea through a 
narrow mouth M in a straight coastline, x = 0. Let 

&(x, y) = && exp { - jk(x  cos Oi + y sin Oi)} (1-1) 

and G = CA -x, Y) (1.2) 

be the complex amplitudes of the incident and apecularly reflected (from x = 0) 
waves on the hypothesis of the monochromatic time dependence exp (jut), where 
5 denotes free-surface displacement (we omit the modifier complex amplitude 
of throughout the subsequent development), k is the wave-number, and 

< -= 2&(0,0) 

is a measure of the excitation of the harbour through M .  By narrow, we imply 

a l R <  1 and leu< 1, (1.3a, b) 

where a is the width of M ,  and R is a characteristic dimension of H .  These 
restrictions imply that the motion within H is small, and that the energy of 
the motion induced by V, (or, more precisely, by the pressure pgV,) is dominantly 
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kinetic and concentrated near M (the narrowness of which implies locally high 
velocities), except in the spectral neighbourhoods of the resonant frequencies of 
the harbour. An appropriate measure of this dominant motion is the flow through 
M ,  say I ,  which, by hypothesis (linearized theory), must be simply proportional 
to 6. We regard T$ and 1 as the voltage and current at the input terminals of an 
equivalent circuit and seek a description of the resonant response of the harbour 
in terms of the voltages induced in this equivalent circuit .t 

The input impedance, 2, = K/I,  for the configuration of figure 1 may be 
resolved (see figure 2(a)) into a series combination of a radiation impedance, 
ZM I R, +jX,, and a harbour impedance, Z, = jX,, where RMI I I 2, X,I I I 2/w, 

0 I I 
0 

(b) 

FIGURE 2. Equivalent circuit for harbour opening directly at coastline: (a) implied by (3.2) ; 
(b)  implied by (3.2) and (4.5). 

and X,l I I 2/w are respectively proportional to the power radiated from H through 
M (in the form of a scattered wave, &), the non-radiated energy stored in the 
exterior half-space, and the energy stored in the harbour (we also could in- 
corporate an empirical, resistive component in Z,, say RE, to account for an 
energy dissipation proportional to RH1II2). We infer from the solution of the 
corresponding acoustical radiation problem (Miles 1948; 5 3 below) that both 
RM and X, are bounded, positive-definite functions of w, by virtue of which we 
may regard them as single resistive and inductive elements, respectively 
(although neither RM nor X M  has the same frequency dependence as its elemen- 
tary, electrical counterpart). We infer from the analogy with the corresponding 

-f There are significant advantages in the inverse analogy, in which voltage and current 
are analogues of flow and pressure, respectively (cf. Miles 1946) ; however, these advantages 
are outweighed by other considerations in tho present development. 

16-2 
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acoustical resonator (Morse 1948, $23) that Z H  comprises an infinite sequence 
of parallel combinations of inductance L, and capacitance C,, which bear a 
one-to-one correspondence to the natural modes of the closed harbour and 
resonate at the corresponding frequencies, w, = (L,C,)-*, together with a single 
capacitor C,, which corresponds to the degenerate mode of uniform displace- 
ment, for which w, = 0. The solution within H may be expanded in this infinite 
set of modes, with the root-mean-square displacement and the kinetic and 
potential energies in the nth mode being proportional to the voltage across C, 
and the energies stored in L, and C,, respectively. The arguments of the pre- 
ceding paragraph suggest that the individual modal impedances are important 
only in the neighbourhoods of their respective resonant frequencies, and hence 
that 2, may be approximated in the neighbourhood of w = w, by a lumped 
inductance, say L H ,  in series with either C, or the single, parallel combination of 
L, and C,, such that the energy in all modes but the nth is proportional to 
LH11I2. The corresponding equivalent circuit is shown in figure 2 ( b )  (we give a 
quantitative derivation of this equivalent circuit in §Q 2 and 3). 

The voltage-amplification ratio, &,cc \E/Kl, provides a measure of the 
resonant response in the neighbourhood of w = w,. The zeroth mode, in which 
the harbour acts like a Helmholtz resonator, is unique in that the equivalent 
circuit reduces to a series combination of R,, LM + L,, and C, and exhibits a 
simple, series-resonant behaviour with a resonant frequency, say Go, that is 
determined by a balance between the potential energy stored in H ,  +!3,l%l2, 
and the kinetic energy stored in the vicinity of M ,  $(LM+LR) The results 
for the rectangular harbour (Miles & Munk 1961) suggest that the sharpness of 
the Helmholtz resonance is measured by 

and that 0, = 0(69), 2, = O(l/S), and Qo = O(l/S) ( 1.5 a, b,  c) 

as a/R -+ 0, where 2, is the peak value of dn, and Q, is the ratio of the resonant 
frequency to the half-power bandwidth of the resonance curve for the nth mode. 

The resonant response of the harbour in the higher modes is strikingly different 
from that of a simple, series-resonant circuit in consequence of the proximity 
of the parallel-resonant frequency, w,, at which Zi = 00, and the series-resonant 
frequency, a,, at which lZil has a minimum and&, = 2, 1. We show in 5 4 that 

0, = w,+O(S), 2, = O(l/S), and Q, = 0(1/62) (n + 0). (1.6a,b,c) 

It follows from (1.5) and (1.6) that narrowing the harbour mouth does not 
affect the mean-square response to a random excitation in the spectral neigh- 
bourhood of w = w, (which response is proportional to O,i?i/Q, if the bandwidth 
of the random input is large compared with 6w,) except in the Helmholtz mode, 
but that the response in that mode increases inversely as 64. Miles & Munk (1961) 
overlooked the proximity of parallel and series resonance in the higher modes 
and arrived at  the erroneous conclusion that narrowing the harbour mouth would 
increase 0,2!/&, for all modes, rather than only the Helmholtz mode, and 
designated the phenomenon as ‘the harbour paradox’. In  fact, as pointed out 
by Garrett (1970), this qualitative conclusion is inconsistent with their quan- 
titative results, which actually imply (1.6) for the higher modes in anarrow 

6 = (log (R/a)}-l, (1.4) 
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rectangular harbour. Garrett also showed that S,gz/Q, is similarly invariant 
for excitation of a circular harbour through an open bottom and correctly con- 
jectured that the result holds generally for the higher modes in any harbour. 
In  brief, the harbour paradox originally stated by Miles & Munk holds only for 
the Helmholtz mode and otherwise must be replaced by the weaker paradox, 
that narrowing the harbour mouth has no significant effect on the mean-square 
response of the higher modes to a random input in the absence of friction 
(narrowing the mouth increases friction, thereby decreasing the response, in a 
real harbour). It follows that the higher modes are not likely to be strongly 
excited, but that the Helmholtz mode may dominate the response of a narrow- 
mouthed harbour to an exterior disturbance that has significant energy in the 
spectral neighbourhood of Go. 

Carrier, Shaw & Miyata (1970) consider a harbour that communicates with 
the coast through a narrow canal and find that both Jo and Q0 are significantly 
increased (as might be inferred from the analogy with the classical Helmholtz 
resonator; cf. Rayleigh 1945, Q 307). We show in $5  that such a canal is analogous 
to an electrical transmission line and may be replaced by a symmetrical, four- 
terminal network for the calculation of V,  (see figure 6). The analogy with the 
transmission line rests on the hypothesis that only plane waves are excited in 
the canal. We examine the effects of higher modes in the appendix and show that 
the elements of the four-terminal network may be appropriately generalized, 
but that the plane-wave approximation is likely to be adequate if the breadth 
of the channel is less than a half-wavelength. 

The precise determination of 2, and 2, requires the solution of an integral 
equation for the normal velocity in M (or, in the case of an intervening canal, a 
pair of integral equations for the normal velocities across the terminal sections 
of the canal). The formulation of $ 5  2 and 3 yields variational approximations 
to 2, and 2, that are invariant under a scale transformation (i.e a change in 
the mean value) of the velocity in M and stationary with respect to first-order 
variations of this velocity about the true solution to the integral equation (cf. 
Miles & Munk (1961) and Miles (1946, 1948,1967); we omit the explicit formula- 
tion of the integral equation and further discussion of the variational principle in 
the present development). The resulting representation of 2, is relatively in- 
sensitive to the geometry of H and yields a simple, explicit approximation that 
depends essentially only on ka. The corresponding representation of 2, requires 
Green’s function (subject to a Neumann boundary condition) for the closed 
harbour, the explicit, analytical construction of which is possible only for those 
boundaries (rectangular, circular or circular-sector, and elliptic or elliptic- 
hyperbolic sector) that permit separation of variables; however, we may infer 
the matrix representation of this Green’s function for a polygonal approximation 
t o  an arbitrarily shaped harbour from Lee’s (1971) collocation solution of the 
general problem. We give numerical results for circular and rectangular harbours 
in Q$S and 7, with special emphasis on the Helmholtz mode. It appears from 
these results that a large harbour with a short entrance or a small harbour with 
an entry canal of length comparable with R may resonate in the Helmholtz 
mode under tsunami excitation. 
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2. Harbour impedance 
We now give a quantitative derivation of Z, on the aforementioned hypotheses 

of linearized, shallow-water theory and monochromatic time dependence. Let 
x and y be the Cartesian co-ordinates in the free surface, t the time, w the angular 
frequency, h the depth, 

c = (gh)* and k = w/c  (2. la,  b)  

the wave speed and wave-number, the free-surface displacement, $2 the x- 
component of the particle velocity, 5 and u the corresponding complex amplitudes, 
such that 

{b, Y, % a(%, Y, t)> = ar{c(z, Y), 4x9  Y))eiWt1, (2-2) 

where 92 implies the real part of and j = J - 1, 

L 

I = J  udS ( d X = h d y )  
M 

the flow through M ,  

a weighted measure of the displacement in M ,  where u* is the complex conjugate 
of u, 

the harbour impedance, and 

P = *9 IpqhlM @* dY] = &pg9( VI*) (2.6) 

the rate at which energy flows through M .  We may regard aV, PI, (a/@) Z,, 
and a@@( VI*)  as the voltage, current, impedance, and power in an equivalent 
electrical circuit, where the constants of proportionality, a and p, may be chosen 
to obtain convenient electrical units. The choice a = p = 1 is implicit in the 
discussion of $ 1 ,  but not in what follows except as noted. 

The shallow-water equations for 5 and u are (Lamb 1932, $ 189; Lamb uses ig 
where we use j w )  

(VZ+k2)C = 0 (02 = P/aX2+82/ay2), (2.7a) 

and = ( j q l w )  ( a c / w -  (2 .7b)  

The solution of (2.7) for an assumed velocity in M ,  subject to the boundary 
condition that thenormal derivative of 6, n . 05, vanish on B, the lateral boundary 
of the free surface in H ,  is given by (Sommerfeld 1949, $9  10 and 27) 

where 
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is the point-source Green's function for H ,  the +, are the normalized eigen- 
functions for the closed harbour, and the summation is over the complete set 
of these functions. The +,, are real and satisfy 

(V2 + k:) $n = 0 (x, y in H ) ,  
(n.V)$,=O on B, 

r 

(2.10a) 

(2.10b) 

and J +rn$ndA = am,, (2 .104  
H 

where kn are the eigenvalues (resonant wave-numbers), and S,, is the Kronecker 
delta. We designate the degenerate (but non-trivial) solution corresponding to 
$ = const. by n = 0: 

k, = 0, +o = A-f ,  (2.11) 

where A is the area of H .  We also note that more explicit results may require 
the use of two indices to count off the individual modes. 

The exact determination of the assumed velocity, u(0, y), requires u and 5 to 
be matched across M to the corresponding solution of the exterior boundary- 
value problem (see 33below). Thismatching condition yields an integral equation 
for u(O,y), the exact solution of which in finite terms does not appear to be 
possible; however, simple approximations to u( 0, y) are capable of yielding 
excellent approximations to 2, and 2, by virtue of the associated variational 
principle (cf. Miles 1946, 1948, 1967; Miles & Munk 1961). We proceed directly 
to such approximations by introducing the normalized trial function f(y), such 
that 

In the subsequent development, we neglect the dependence of f(y) on K and 
assume that it depends only on the geometry of M ;  see, e.g. (3.5) and (3.6) below. 
The validity of this approximation, which also implies that f(y) is real, depends 
essentially on the antecedent approximation ka 4 1. 

Substituting (2.12) into (2.4) and (2.8) and combining the results in (2.5), we 
obtain 

and 

Substituting (2.9) into (2.14), we obtain 

where 

(2.14) 

(2.15) 

( 2 . 1 6 ~ )  

= ( J b / C 2 )  ,Un(K, - K)-' (2.16 b) 

is the modal impedance (note that 2, = l/jwA), 

(2.17) 
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is a dimensionless measure of the excitation of the nth mode through M (note 
that po = l), and 

K = k2A = w2(A/gh) and K, = k:A = wi(A/gh) (2.18a, b) 

are dimensionless measures of (the square of) the frequency and of the eigenvalue 
k i .  The 2, in the equivalent circuit appear in series, 2, appears as a capacitor, 
and each of the remaining 2, appears as a parallel combination of an inductor 
and capacitor, with inductance and capacitance proportional to ~ , / ( K , C ~ )  and 
Alpn, respectively, that exhibits parallel resonance a t  w = w, = knc.  The 
equivalent-circuit parameters in § 1 are L, = , u ~ / ( K , c ~ )  and C, = Alp,. 

The dominant terms in 2, as K --f 0 are 2, and the sum of the inductive re- 
actances obtained by neglecting K relative to K, in the remaining 2,. Let 

and 

G(O)(y, 7) = lim [G(O, y;  0 , ~ )  + K - ~ ]  (2.19a) 
k-0 

(2.20 b) 

where the prime implies the exclusion of n = 0 from the summations; then 

2, = ( j w / c 2 )  [AP - K - ~  + X’ ,U~(K/K, )  (K, - ~)-l] ,  (2.21) 
n 

where A P  is independent of K and depends only on the geometry of the harbour 
by virtue of the corresponding approximation for f(y). 

The representation (2.9) for the Green’s function is ideally suited to the repre- 
sentation of 2, in terms of modal impedances, but the analytical determination 
of the eigenfunctions is feasible only for those shapes that permit the solution 
of the Helmholtz equation by separation of variables. An alternative determina- 
tion of G(x,  y; 0 , ~ )  is provided by (cf. Miles & Munk 1961 ) 

(V2 + k 2 )  G = 0 (2.22 a) 

(n.V)G = 0 (x,yonB), (2.22 b) 
(x, y in H ) ,  

and aGjax = - S(y - 7) (x, y in M). (2.22 c) 

Applying Green’s second theorem to G(x,  y; 0 , ~ )  and the fundamental solution 
- ~ j H ~ l ~ ( k ~ r - r l ~ ) ,  where r and  rl are points in H and on B + M ,  respectively, 
we may transform (2.22) to an integral equation which is equivalent to that 
formulated by Lee (1971).t Dividing B into N ,  and M intop, segments of length 
A and replacing G(0, y; 0 , ~ )  by a p x p matrix with its elements evaluated at  the 
corresponding points in M ,  say G, we obtain 

G = A-IM,, (2.23) 

7 Lee assumes the time dependence exp ( - iwt),  in consequence of which it niight appear 
necessary to replaco - iHt) in his formulation byjHh2’ in the present formulation; in fact 
this is unnecessary by virtue of the fact that G is real (since there is no dissipation in the 
harbour). The essential rcqiiirement is that the fundamental solution satisfy the Helmholtz 
equation and be singular like (1/7r) log ]r-rll as r + rl. 
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where M, is Lee’s p x p ,  truncated matrix, with the element at  i and j in his 
notation corresponding to the element at (0, y) and (0,r) in the present notation. 
Representingf(y) by a column matrix of order p ,  say f ,  subject to the constraint 
that the sum of its elements be equal to l / A ,  and invoking (2 .14) ,  we obtain 

2, = ( ~ o J / c ~ )  A f  *M, f, (2 .24)  

where f * is the complex-conjugate of the transpose of f (i.e. a row matrix made 
up of the complex conjugates of the elements off). We remark that M is Hermitian 
by virtue of which f *Mf (a Hermitian form) is real. 

(Hwang & Tuck (1970) also develop a numerical method for the treatment of 
arbitrarily shaped harbours; however, they do not distinguish between the 
exterior and interior of H ,  in consequence of which their treatment is less con- 
venient than that of Lee in the present context.) 

3. Radiation impedance 
The solution of the shallow-water equations (2 .7)  in the exterior half-space 

(x < 0) for a prescribed incident wave, say &(x,y), and the assumed velocity 
u(0, y) in the harbour mouth is given by (Miles & Mu& 1961) 

C(Z,Y) = 5 i ( ~ , Y ) + ~ ~ ( - ~ , Y ) + ~ s ( X , Y ) ,  ( 3 . l a )  

where L(x,y) = - & ( ~ / g ) / ~ H b ~ ’ [ k ( x ~ +  I ~ - ~ ] ~ ) * ] u ( O , r ) d y  (x < O ) ,  ( 3 . l b )  

Hi2’ is a Hankel function, the first two terms on the right-hand side of ( 3 . l a )  
give the solution for total reflexion from the plane x = 0 (as would occur if M 
were closed), and is the scattered wave. Substituting u into (3 .1 )  from (2.12),  
setting x = 0, and then substituting the result into (2 .13) ,  we obtain 

where 

v= &--ZM1,  
n 

( 3 4  

(3 .3a )  

is the equivalent exciting voltage of the incident wave, and 

is the radiation impedance of the harbour mouth. The equivalent circuit corre- 
sponding to (3 .2)  is sketched in figure 2 (a). 

The following estimates of the velocity-distribution function are suggested 
by Rayleigh’s ( 1  945, 0 307) arguments for the (acoustical) Helmholtz-resonator 
problem : 

(3.5) 

and f@)(y) = r l [ ( t a ) 2 - y 2 ] - - )  (lyl < +a). (3 .6)  

f‘”(y) = l / a  

t The definition of implicit in (1.1) corresponds to  the approximation (3 .3b) .  
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The distributionf(l) would be realized if a rigid, massless piston were fitted to M ,  
whereas f 2 )  would be realized in a two-dimensional, potential flow through the 
corresponding opening in a plane barrier. 

Substituting (3 .5)  and (3 .6 )  into (3.4) and invoking La < 1, we place the re- 
sulting approximations to ZM in the form, 

2, = (@/c2) [Q+jAM(La)] (La < I ) ,  (3 .7)  

where TA@ = 8 - In ( i y k a ) ,  (3.8) 

(3.9) M - -1n (bh), nA(2) - 

and lny = 0.577 ... is Euler's constant. The difference between A 3  and A S  is 
only 0.036, which illustrates the relative insensitivity of 2, to the choice of 
the normalized trial fimction (by virtue of the implicit variational principle; 
cf. Miles 1948). 

1 *2 

1 -0 

0.8 

0.6 

0.4 

0.2 

0 2 4 6 8 10 

kcc 

F I G ~ E  3. The mdiation impedance for the harbour mouth, as given by (3.10). 

The approximation implied by (3 .5)  for arbitrary La is (Miles 1948) 

( 3 . 1 0 ~ )  
J O  - 1 + 2j(?rka)-l+ O{(ka)-*], (3.10b) 

and is plotted in figure 3. The approximation of (3 .7 )  and (3 .8)  is within 2% 
of (3 .10a)  for La 6 1. 

The scattered wave implied by (2 .12)  and ( 3 . l b )  at a sufficient distance from 
the mouth is given by 

&(x, y) = - Q(w/c2) I H f ) ( k r )  (ka < 1 ,  r B a) ,  

where r is the polar radius measured from the mid-point of M .  

(3.11) 
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4. Resonant response 
An appropriate measure of the response of the harbour to a prescribed incident 

wave is the mean-square elevation, say cr2, as determined by averaging over 
both space and time (the temporal average of p" is t (c lz) :  

Substituting ginto (4.1) from (2.8), invoking (2.9) for G and (2.12) for u, carrying 
out the integration over A with the aid of (2.1Oc), and invoking (2.16b) for 
2, = %/I ,  where V,  is the voltage induced across 2, by I, and (2.17) for pn, we 
obtain 

(T2 = & ~ / . 5 ~ 1 ( ~ ( z  E i ( K l z E d i ( K ) ,  

where d n ( K )  r~i'IV,/%l ( 4 . 3 4  

(4.2) 
n n 

= PC~Z' Izn/(zM + 2,) I (4.3b) 

is the ampbi$cation factor for the nth mode. Invoking (3.36) on the hypothesis 
&/A < 1, we obtain af = +1QI2 for the (temporal) mean-square elevation of 2ci, 
by virtue of which (4.2) reduces to 

V z  = f T f C d i ( K ) .  (4.4) 
n 

The hypotheses ( 1 . 3 ~ )  and (1.3b) imply AF 3 1 and AM > 1, respectively, 
in consequence of which (Z,(  < (ZM+ZHI except in the neighbourhood of 
K = K,. Approximating (2.21) by 

2, + ($J/C2) [Ag '+ ,Un(K, -K) - l ] ,  (4.5) 

in this neighbourhood and invoking (2.16b) and (3.7) €or 2, and Z M ,  we obtain 

( 4 . 6 ~ ~ )  

and d n ( K )  = / 4 { i ( K - K n ) 2 +  [ ( K - K n ) L - / - G I z } - ' ,  (4.6b) 

where A,&) = AP +A,(ka), (4.7a) 

A, = A$'j'+A,(kna) (n O ) ,  (4.7b) 

and AB) = A P -  (pn+ ~)K, -~+K,E ' ,u ,K~~(K, -K, ) -~ ,  ( 4 . 8 ~ )  

+ AP. (4.8b) 

Both m = 0 and m = n are excluded from thesummationin (4.8a), whichneglects 
terms of O(K - K,) as K -+ K,, whilst (4.8 b )  neglects terms of O( 1) relative to the 
logarithmic terms in Ag) and AM as a/R and lea + 0. We assume A, 3 1 through- 
out the subsequent development (6 - l/A, in § 1). 

The resonance curves of ( 4 . 6 ~ )  and (4.6b) are illustrated in figures 10 and 12, 
using the results derived in 5 6 for a circular harbour. 

The peak value of d,, say Jn, occurs at the series-resonant point, say K = En, 

where RoAO(RO) = 1, (4.9a) 

R, = ~ , + p , A ; l  (n =k 0 ) ,  (4.9b) 

do = 2zg1, (4.10 a)  

and 2, = 2p;%A, (n + 0). (4.10b) 

d , (~ )  = ( 1 ~ ~  + [KA,(K) - 112}-4, 

m 

- 
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The amplification factor drops off sharply on both sides of K = I?,, passes through 

(4.11) 
the points 

and is O(l/A,) for (K- K,J 9 l/A,. The points K = K, corresponds to parallel re- 
sonance (2, = a), for which the total flow through M vanishes ( I  = 0) whilst g% 
remains of the same order as ~ 2 .  We define the Q of the resonant response near 
K = R, as the ratio of the resonant frequency to the half-power bandwidth, such 
that (the frequencies at the half-power points are proportional to a$( 1 k &&l)) 

d [ F n (  1 & (?;I)] = 2-4 2,. (4.12) 

Substituting (4.6) into (4.12) and invoking (4.9), we obtain the first approxima- 
tions - 

Qo = 2 q =  do (4.13 a)  

and Q, = 2 p i 1 ~ , h ;  = $ E n d : .  (4.13 b )  

Now suppose that the incident wave is random with the power spectral 

d ( K , )  = d(2Zn - K,) = p;+, 

density X,(f), such that 

where f is the frequency. 

h',(f)df (W = Z n f ) ,  

Generalizing (4.4), we obtain 

(4.14) 

(4.15) 

for the power spectral density in the harbour. Substituting (4.6) into (4.15), 
invoking w = CK/,/A, and calculating the contribution of the resonant peaks at 
w = w, on the hypothesis that their bandwidths are small compared with those of 
Si( f ), we obtain 

g2 = (gh/A)'Z 8 n X ( ( f f i ) ,  (4.16) 

8, = (47f)-1ZG42: [1+ ( & , / / ? , ) 2 ( K - ~ n ) 2 ] - 1 d K  (4.17a) 

(4.17b) 

is the power-spectrum-amplijication factor for the nth mode. Substituting (4.9), 
(4.10) and (4.13) into (4.17b), we obtain 

8, = $I?;*, (4.18) 

from which we infer that narrowing the harbour mouth does not affect sig- 
nificantly the mean response to a random input except in the Helmholtz mode, 
but that it does increase significantly the response in that mode (this conclusion 
ignores the increase in viscous dissipation that would be associated with narrowing 
the mouth). 

The approximation (4.5) is inadequate for closely spaced eigenvalues (near 
degeneracies). Let K, and K, ( K ~  > K,) be adjacent eigenvalues; incorporating 
the contributions of both of the corresponding terms in the series of (2.21) and 
assuming A P  % 1, as in the approximation (4.8b), we obtain 

n 

som where 

N &x$Q;'22 (QnlK"n + 00) 

2~ = ( jw/C2)  [hg'!+P,(K/K,) ( K , - K ) - l + P n ( K / K n )  ( K n - K ) - l ] ,  (4.19) 
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in which the last term must be replaced by - 1 / ~  if n = 0. An appropriate measure 
of the coupling between the two modes is 

E = (PFL,+Pn)-14&G?z--K,). (4.20) 

If E 9 1, the principal effect of replacing (4.5) by (4.19) in the calculation of 
resonant response is to increase 2, and decrease Zn by increments of O( l/a2); 
we give an example in $ 6  below. If E N 1 the resonant peaks ofdm(K) anddm(K) 
tend to merge, and &‘&(K) + d i ( ~ )  exhibits a relatively broad, double-humped 
peak. If E < 1, the two resonant peaks merge and yield the peak value 

(@+&+43rnax = 4(Pm+P,)-% (n * 0) ( 4 . 2 1 ~ )  

at (4.21 b )  

within 1 + 0 ( c 2 ,  l/A,). If K~ = K, ( B  = 0) ,  the shape of the resonance curve for 
a2 near K = K, is similar to that for an isolated mode near K = K,, with both 
peak value and Q reduced in the ratio ,u,/(pm+p,). The power-spectrum- 
amplification factor is unchanged. 

Turning to the scattered wave, as given by (3.1 l), we infer from the preceding 
discussion that Q vanishes at the parallel-resonant frequencies and attains its 
peak value at  the series-resonant frequencies, where 2, + 2, reduces to &(w/c2); 
substituting the corresponding value of I into (3.11), we obtain (the peak value) 

(4.22) 

The ratio \Cs/[sl = i(w/c2) I Z M f Z H 1 - l  (4.23 a) 

(4.23b) 

is plotted in figure 12 for a circular harbour (see 3 6 below) in order to illustrate 
the contiguous effects of parallel and series resonance in the neighbourhood of 
parallel resonance (which does not occur in the Helmholtz mode). 

The limiting form of (3.11) for very long waves, such that ZM + 2, is dominated 
by 2, = l / ( jwA),  is 

Q - - +jk2A‘CTBp’(kr) (k’A -+ 0). (4.24) 

This result may be of some interest in connexion with the effects of coastal 
topography on tidal phases (Munk, private communication). 

K = R ( P ~  + ~ U n ) - l  ( ~ m ~ m  +Pu,Kn) + (Pm +PA 

cs = - ~ , ~ b ~ ’ ( k r )  (w = @,,ka < 1,r % a). 

+ [I + 4{An +P,(K, - ~)-‘}‘]-4 

5. Equivalent circuit for canal 
We now interpose a canal? of breadth b and length 1 between the harbour and 

the coast, as shown in figure 4, and obtain the equivalent circuit on the assump- 
tion that only plane waves need be considered in. the canal. This approximation 
is strictly valid only for kb < 1, but we show in the appendix that the effects of 
the cross-waves (y-dependent modes) are not likely to be significant for kb < T. 

Invoking the plane-wave approximation, u = %(x) and 6 = <(x), in (2.3) and 
(2.4), we obtain 

I(x) = bhu(z) and V ( x )  = C(Z). (5 . la ,  b) 

t We use canal in the same sense as Lamb (1932, i169ff.). Some might regard the 
synonym chunne2 as more appropriate in the present context. 
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Solving (2.7), subject to the assumed vaIues I, and I, at x = 0 and 1, respectively, 
we obtain the transmission-line solution, 

(5.2a) 

and (5 .2b)  
1(x) = csc kZ[ll sin k(Z - x) + I, sin kx] 
V(x)  = (jbc sin kl)-l [I. cos k(Z- x) - I, COS kx]. 

C’ 

FIGURE 4. Canal and equivalent circuit for the plane-wave approximation. The impedances 
Z,, = Z,, and Z,, are given by (5.4). 

FIUURE 5. The equivalent circuit for a stepped canal. The networks I end I1 are calculated 
as in figure 4, using h = h, and I = El in I and h = h, and I = I, in 11. If the step is in 
breadth, rather than depth, the impedance Z(p), as given by ( 5 4 ,  must be inserted in. the 
upper connexion between I and 11. 

Setting V(0)  = V, and V(Z) = V, in (5 .2b) ,  we obtain the matrix equation 

where 
and 

The four-terminal network implied by (5.3) and (5.4) is sketched in figure 4, 
wherein the arms (Zll-Z12) and pillar (Z,,) are inductive and capacitative, 
respectively, for kl < T (1 less than a half-wavelength). 

The preceding results remain valid for a canal of arbitrary (but constant) 

Z,, = Z,, = - ( j / b c )  cot kl,  Z,, = - ( j / b c )  csckZ, 
Z,, - Z,, = Z,, - Z,, = ( j / b c )  tan &kl. (5.4) 
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cross-section 8 if h 3 Slb, where b is the breadth of the canal at the free surface 
(Lamb, $169). The results also are valid for a canal of variable depth in the sense 
that the effects of the cross-waves (y-dependent modes) that are generated by 
a change in depth are negligible in the shallow-water approximation (see Lamb 
( 3  176) for a qualitative argument, and Bartholomeusz (1958) for a proof). The 
equivalent circuit for a canal of variable depth may be approximated by dividing 
the canal into segments of constant depth and cascading the four-terminal 
networks for the individual segments, as illustrated in figure 5. The effect of a 

FIGURE 6. Equivalent circuit for harbour connected to coast through canal: (a) general 
case; (b) Helmholtz mod0 (k2A < 1, kl < 1). 

change in breadth may be inferred from the corresponding acoustical problem 
(Miles 1946). Suppose, for example, that the breadth decreases abruptly from 
b, to b, in consequence of a step on one side of the canal. The equivalent circuit 
for the stepped canal then consists of the cascaded, four-terminal networks of 
figure 5 plus an impedance, 2(/3), that must be inserted in the upper connexion 
between I and 11. Invoking the approximation kb, < 1, we obtain (Miles 1946; 
equation (132), wherein Z(P) = (j/b,c) (Bo/Yo) and P = a) 

wherein /3 = b,/b, < 1 (b, is defined as the breadth of the narrower channel, which 
may be on either side of the discontinuity). 

Inserting the equivalent circuit for the canal between the equivalent circuits 
for the harbour mouth (at x = 0) and the harbour (at x = I ) ,  we obtain the equiva- 
lent circuit shown in figure 6 (a). Calculating I, and the corresponding voltage drop 
across 2, and invoking ( 4 . 3 ~ )  for the modal amplification factor, we obtain 

Pi ,QZ, (K)  = 1KI-l lZnI2l ( 5 . 6 ~ )  
= I(ZJM+-%) ( % + 2 2 2 ) - 2 W  lz,zl,I (5.6b) 
= \ (2, + 2,) COB kl +j((bc)-l+ bcZ,Z,) sin lel1-l lZ,l, ( 5 . 6 ~ )  

Z(P) = 2 ( . i @ / W  [log{(1 -P2)/(4P))+ HP+P-')log{(1 +B)/(l -P,>l, (5.5) 
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where ( 5 . 6 ~ )  follows from (5.6b) through (5.4). The frequency dependence of 
d n ( ~ )  is qualitatively similar to that established in 8 4, but 2, - K, may not be 
small. The values of Jn and Q, may be substantially larger than those given by 
(4.10) and (4.13); however, (4.18) remains valid for n + 0,  and the results there- 
fore are of limited interest. There also exist modes that correspond to resonance 
of the canal itself, for which x = I is approximately a node and the motion ex- 
cited in H is small, but these, too, are governed by (4.18), in the sense that de- 
creasing the channel width does not affect the mean response of the canal to 
a random input except in the Helmholtz mode. 

We consider further the special case of Helmholtz resonance, assuming 
kl < 1 as well as k2A 4 1. The equivalent circuit then reduces to that of figure 6 (b).  
Calculating IV,/V,l in this circuit, and neglecting terms of O(k2bl) relative to 
unity, we obtain 

d O ( K )  = {a( 1 + 01)' K2 + [ K A ( K )  - 112}-4, (5.7) 

where a = bl/A (5.8) 

A(K) = AP++1+a)AM(ka)+( l  +&)( l /b ) .  (5.9) 

is the ratio of the canal and harbour areas, and 

Resonance is determined by ZoA(Zo) = 1, and yields 

and 

2, = Q0 = 2(l+a)-lZ,1 

8, = Q( 1 f a)-1 2;4 

(5.10) 

(5.11) 

in place of (4.10a), (4.13a), and (4.18). The resonance curve of (5.7) is illustrated 
in figure 10, using the results of the following section. 

6. CircuIar harbour 

are given by 
The eigenfunctions determined by (2.10) for a circular harbour of radius R 

( 6 . 1 ~ )  

and Jk(jks) = 0 (m = 0,1 ,2 ,  ...; s = 0,1,2,  ...), ( 6 . 1 ~ )  

where r is the polar radius measured from the centre of the harbour, 0 is the 
polar angle measured from the mid-plane of the mouth, we write $m(r,13) in 
place of $m(x, y), the indices m (thenumber of azimuthal modes) and s (thenumber 
of radial nodes) jointly replace the single index n in 5 2, and the eigenfunctions 
obtained by choosing the alternatives cosmI3 and sinmI3 are distinct. The eigen- 

(6.2) 
values are given by 

The zeroth mode of (2.11) corresponds to m = s = 0,  for whichj;, = 0. 

Kms = r(jjnJ2* 

We specify M by R = 1 and - QOM < I3 < +OM, where 

0, a/R < 1, (6-3) 
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by virtue of which we may neglect the curvature of the harbour boundary over 
its intersection with the straight coastline. The essential approximation is 
sin $0, i +OM, which is in error by less than 5 yo for a/R < 1. 

Substituting (6 .1)  and (3 .6 )  into (2 .17) ,  we obtain 

l ~ m s  = ( 2  - aom) (m/jks)21-1 [1+ O(m28L)I (6 .4 )  

for the cosm6 modes and ,urn = 0 for the sinm6 modes. The approximation 
(6 .4 )  is not uniformly valid as m -+ 00, but it suffices for all but the calculation 
of A%) through (2 .206) .  The result for the sinm0 modes follows from the assump- 
tion that f(y) is an even function of y, which is strictly true only for normal 
incidence; however, the contribution of these modes to A, is small relative to 
the contribution of the cos rn0 modes. 

Substituting $ms(R, 8) 1C.,(R, 4) from (6 .1)  for $n(O,y) $ n ( O , q )  in (2 .19b)  and 
replacing the summation over n by a double summation over m and s (excluding 
the term for m = s = 0 ) ,  we obtain 

( 6 . 5 a )  

m 

= &+ c. m-lcosm(8-$) 
m= 1 

( 6 . 5 ~ )  

= Q - log [ 2  sin (410 - $I)] ( 6 . 5 a )  

= W O g ( l Y - W )  (l0,$I @ 11, (6.5e) 

where ( 6 . 5 ~ )  follows from (6 .5b )  with the aid of the partial-fraction expansion 
of Jm(x)/xJk(x) in the limit x --f 0 (or alternatively, from the solution of (2 .22)  
as k + 0). Substituting (6 .5e )  into (2 .20a)  and invoking the approximation (3 .6)  
for f(y), we obtain nAP = Q + l n ( 4 R / a )  (0, < 1). 

Combining (3.9) and (6.6) in (4 .7) ,  and invoking (4 .8b)  for n $. 0, we obtain 

nA, = 3 . 0 1 3 5 + 2 1 n ( R / a ) - I n ( k R ) ,  (6 .7 )  

wherein k = Ic, for n $. 0. 

the series-resonant wave-numbers, 
Substituting ( 6 . 4 )  and (6 .7)  into ( 4 . 9 )  and invoking (4 .8b )  for n + 0, we obtain 

ZmR = (2,&)*, ( 6 . 8 )  

tabulated in table 1. The preceding approximations appear to be reasonable for 
a/R < 0.3. The results for 0.3  < a/R < 1.0 are included for rough comparison. 

We illustrate the coupling between relatively well separated modes, E 9 1 
in (4 .20 ) )  by invoking (4.19) in place of (4.5) for the Helmholtz and ( 1 ,  0)  modes 
(K,  +- 0 and K, -+ K~~ in (4 .19)  and (4 .20 ) ) .  Retaining only the dominant terms, 
as in ( 4 . 7 a )  and ( 4 . 8 b ) ,  we obtain 

2-l = plo(2 - K ~ ~ )  = AP + A,(lca) (6 .9 )  
F L M  46 
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in place of (4.9). The two roots of (6.9) are tabulated in the third and fourth 
columns of table 1 between the corresponding, single-mode approximations. 
The relative change in go, is negligible, and that in kl0 less than 2%, for 
a/R 6 0.3; however, the relahive change in El,, - k,, is significant. 

The (4,O) and ( 1 , l )  modes have nearly equal eigenvalues, for which 8 < 1 in 
(4.20). The corresponding series-resonant wave-number given by (4.21) is 

(0,O) kn8R (4, 0 )  
and and 

m, 8 )  (0, 0)  (1,O) (1, 0) (2, 0) (0, 1) (3, 0) (4, 0) (1, 1) (1, 1) 

0 0 1.841 1.841 3.054 3.832 4.201 5.318 5-322 5.331 0 
0.01 0.272 0.272, 1.913 1.907 3.106 3,844 4.246 5.359 5.381 5.349 
0.03 0.298 0.298, 1-932 1.923 3.118 3.847 4.258 5.370 5.397 5.354 
0.1 0.339 0.338, 1.968 1.951 3.142 3.853 4.280 5.391 5.426 5.364 
0-3 0.397 0.396, 2.042 2.001 3.187 3.864 4.323 5.433 5.487 5.383 
1.0 0.522 0.517, 2.434 2.162 3.356 3.910 4.509 5.641 5.771 5.476 

a/R \ 

TAELE 1. The series-resonant wave-numbers, im8.R, for a circular harbour. The results are 
based on the single-mode approximation of (4.9) except as noted. The third and fourth, 
and the ninth, columns illustrate the effects of coupling between well separated and nearly 
degenerate modes, respectively. 

h, 
2nR 

1 
0.01 0.03 0.1 0.3 1 

b l R  

FIQURE 7 

1 .o 
2-- 
0.01 0.03 0.1 0.3 

b / R  

FIGURE 8 

FIGURE 7. Wavelength for Helmholtz resonance of circular harbour plus canal (b  a for 
1 = 0). The results are strictly valid only for b / R  < 1 and k,l < 1, but the corresponding 
errors are not likely to exceed 5-10 yo for b / R  < 1 and k,l < it-. 
FIGURE 8. Resonant amplification factor, do = &,,for Helmholtz mode in circular harbour. 
k,l 

Y 

& to the right of the dashed line. 
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FIGURE 9. Power-spectrum amplification factor for Helmholtz mode in circular harbour. 
b,l > + to the right of the daehed line. 
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FIGURE 10. Resonance curve for Helmholtz mode in circular harbour, as given by (5.7) 
and (6.7) for a / R  = 0.1 ( b  a). 
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FIGURE 11. Q,, for the first five modes in a circular harbour. The dashed portions of the 
curves correspond to ka > 1. 

1 

0 0.5 1 1.5 2 

kP10 

FIGURE 12. Resonance c~1pv0 for 10 mode (kloR = 1.841) in circular harbour. The amplifica- 
tion factor is given by (4.6a) and (6.7), whilst the scattering-amplitude ratio is based on 
(4.233) and (6.7). 
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tabulated in the ninth column of table 1 and is seen to be larger than (the single- 
mode approximations to) both t,, and Ell, although the relative changes are 
less than 1 % and 2 %, respectively, for a/R 6 0.3 (but, as in the preceding ex- 
ample, the relative changes in E - k,, and E - k,, are significant). 

The resonant wavelength, A, = 2n/$,, 2, = Q,, and Po for the Helmholtz 
mode, as determined by (4.9a), (4.10a), (4.13a), and (4.18) in conjunction with 
(6.7) are given by the lowest curves in each of figures 7-9. The higher curves in 
figures 7-9 are based on (5.7)-(5.11) and illustrate the striking effects of an 
intervening canal on Helmholtz resonance. Typical resonance curves for the 
Helmholtz mode are plotted in figure 10. Q,, as determined by (4.13), is plotted 
in figure 11 for the first five modes. The resonance curve for the 10 mode is 
plotted in figure 12. The remarkable sharpness of the higher modes, vis-d-wis 
the Helmholtz mode (in the absence of a canal), is borne out by Lee's (1971) 
experiments. 

The period for the Helmholtz mode is given by 

To = A,/c = 2n(A/gh)Bk$. (6.10) 

Choosing R = 1000' and h = 20', we obtain To = 2h0/nR minutes, which approxi- 
mates typical tsunami periods (20-40min) for h0/2nR in the range of 5-10 (see 
figure 7). We infer that a large harbour with a short entrance (Z/R 4 l) ,  or a small 
harbour with a canal (ZIR N 0-3-3), may act as a Helmholtz resonator under 
tsunami excitation. 

7. Rectangular harbour 
The eigenfunctions and eigenvalues determined by (2.10) for a rectangular 

harbour bounded by x = 0 , X  and y = 0, Y (so that the origin for x and y now 
is placed at  one corner of the harbour) are given by 

and kLn = (mn/X)2+(nn/Y)2 (m = 0,1,2, ...; n = 0,1,2, ...), (7.2) 

where the joint indices m and n replace n in 5 2, and the zeroth mode of (2.11) 
corresponds to m = n = 0. 

Substituting (7.1) and (7.2) into (2.19b), we obtain 

(7.3b) 
1 x  2 " l  nnX 

= (T) +; 2 - coth (k) cos rq) cos r?) 
n=l n 

+ 2 nn=l 5 n [ coth rq) - 11 cos rq) cos r?) , (7.3 c )  

where (7.3b) follows from ( 7 . 3 ~ )  with the aid of the partial-fraction expansion 
of the hyperbolic co-tangent. The series in (7.3b) may be summed without further 
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approximation, but the result (which may be obtained by solving the correspond- 
ing problem in potential theory) involves elliptic functions. The error in neglecting 
the series in ( 7 . 3 ~ )  is less than 10% (0.5%) for X/Y > f (4). 

!E 

FIGURE 13. Wavelength for Helmholtz resonance of rectangular harbour with entrance 
at either one end ( y ~  = $a, - - -) or centre (g/1~ = +Y, -). The lower curves have 
been terminated on the right at ka = 1. 

Turning to the estimation of Ag), we specify 1M by x = 0 and y = yM &a, 
introduce the change of variable 

cos(ny/Y) = cosacosp+sinasinpcos$ (a = 77a/2Y, p = 7ryM/Y),  (7 .4 )  

which maps M on 0 < $ < n, and pose the trial function in the form 

f (Y) dY = d $ h ,  (7 .5)  

which is equivalent to (3.5) for a/Y  -+ 1 and to (3 .6)  for a / Y  -+ 0. Substituting 
(7 .3c) ,  (7 .4 )  and (7 .5)  into (2.20a),  we obtain 

m 

( 7 . 6 a )  

= +n(X/Y)+log ( C S C C I . C S C P ) + ~ ~ X ~ (  -S.rrX/Y) cos2acos2p 

+ O{exp ( - 4nX/ Y)} ,  (7 .6b )  

where pOn is given by (7 .7 )  below, and (7 .6b)  follows from ( 7 . 6 ~ ~ )  through the 
expansion of coth ( n n X /  Y )  in powers of exp ( - 2nX/ Y ) .  

Pmn = (2 - 8om) (2 -&on) {(1/4/o= cos (nn.y/ Y) 

Substituting (7 .1) ,  (7.4), and (7 .5)  into (2 .17) ,  we obtain 

( 7 . 7 a )  

= 2-r?0m (n= 0) (7 .7b )  

= 2(2-8,,)c0s2ac0s~p (n = 1)  (7 .7c)  

= 2(2-Som)  (3C0s2acos2/3-cos~a-cos2p)2 (n = 2) ( 7 . 7 4  

= (Z-~om)(2-80 , )Cos2np[ l+O(a2)]  (a+ 0). (7 .7e)  



Resonant response of harbours 263 

The Helmholtz-resonance parameter, R;* = h0/(27rA4),as determined by ( 4 . 9 ~ )  
in conjunction with (4 .7a)  and (7 .6a) ,  is plotted in figures 13 and 14. The corre- 
sponding values of go and Qo are determined by (4 .13a) .  The results for a square 
harbour with centred entrance (X = Y and ym = &Y) differ from those of a 

FIGURE 14. Wavelength for Helmholtz resonance of rectangular harbour with entrance at 
either one 0nd (YM = &a, - - -) or centre (YM = QY, -). 
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1, 1 1 , 2  2,o 2 , l  2 ,2  

Y M  == ay 
A 

\ 

- 148 545 - 332 
- 219 359 - 333 
- 468 251 - 542 
- 33.7 107 - 66.0 
- 59.5 94.8 - 86.0 
- 155 87.4 - 177 

Y M  = +a 
A 

f \ 

97.7 354 353 217 335 1270 671 780 
205 745 205 195 458 743 457 707 
472 1725 129 291 913 472 451 1062 

263 99.5 81.3 51.5 89.0 258 143 190 
57.9 222 55.1 52-6 134 181 115 200 

151 591 41.9 91.6 312 143 139 359 

TABLE 2. Q,, for rectangular harbour. 

circular harbour of the same area and a/R = 2ym/ Y by less than 1 yo. Introducing 
a canal increases C,$ to values comparable with those of figure 7 (note that 
h0/2nR = T + R ; ~  in figure 7 ) .  

The calculations for the higher modes are straightforward but form a five- 
parameter (m, n, a/ Y ,  ym/ Y ,  X /  Y )  family. We list representative values of Qmm, 
as determined by (4.13b) in conjunction with (4.8a), (7.2), (7 .6a) ,  and (7.79, in 
table 2. These values are comparable with those for the higher modes in the 
circular harbour. 
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Appendix. Cross-waves in canal 
The plane-wave approximation is violated, and the results of $ 5  require 

modification, in the neighbourhoods of discontinuities such as those at the 
seaward and harbour ends of the canal in figure 4. The exact solution of (2.7) 
in the rectangular canal extending from x = 0 to x = I and bounded by y = 0, b 
is given by (2.8), extended to include the excitation at both ends of the canal: 

b 

0 
a x ,  Yf = (jo:df [G(x, 9; 0,r)  4 0 ,  r )  - G(x, 9; I, 71) a ?)I dr7 (A 1) 

where G is the Green’s function for the rectangular harbour (with X = I and 
Y = b ) ,  and the opposing signs of the terms at the two ends of the canal reflect 
the fact that the normals to the end planes at x = 0 and I are oppositely directed. 
An alternative representation of the Green’s function, which proves more con- 
venient in the present context than the normal-mode representation implied by 
(2 .9 )  and (7.2,2),  is given by 

G(x, y; 5 , ~ )  = - (kb)-l csc kZ C O ~  [k(b-  I X  - [ I  )] + $ ( I  - 12 - 51, y, y), (A 2) 
2 O0 cosh(knx) 

where 9(x’ ” = b zl kn sinh (k,Z) 

and An = [(nn/b)2- k214. (A 4) 

4 0 ,  Y) = (W)fl(!h and Y) = (12/h)f2(Y) (A 5 )  

Substituting (A 2), 

into (A 1 )  and invoking the normalization of (2 .12b)  forfl and f 2 ,  we obtain 

where [ (O),  the plane-wave solution, is given by (5.2b). Substituting (A 6) into 
(2.13) and placing the results for V, (x = 0)  and V, (x = I) in the form (5.3), we 
obtain 

2, = 2;:) + ( j W / C Z )  ~ ~ : ~ ~ b J ( S , z , Y , r ) S : ( ? l ) f s ( r ) d 7 d l l  ( r  = 1 , 2 ;  = 1 , 2 ) ,  (A 7) 

where 2;:’ is given by (5.4), and S,, is the Kronecker delta. 
The contributions of the cross-waves, as represented by the second terms on 

the right-hand sides of both (A 6) and (A 7),  vanish identically in the plane-wave 
approximation, which implies fl(y) = f2(y) = l / b .  These contributions will be 
finite but small for any other reasonable approximations to f l , 2  if kb < n. We 
consider, e.g. (cf. (3.6)), 

fl(Y) = f2(Y) = n-’y-B(b - y1-4 = f(9h (A 8) 

which is likely to overestimate the cross-wave contributions in consequence of 
overestimating the strength of the singularities at y = 0 and y = b (the actual 
singularity for a rectangular corner a t  y = 0 must be like y-Q, rather than y-4). 
Substituting (A 3) into (A 7),  and invoking (A 8) and the corresponding integral 
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which vanishes for n odd, we obtain (with n = 2m) 
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(A 10a) 

(A lob) 

= (jo/7rc2) [Qd,.' + O(exp ( - 2nZ/b))], (A lOd) 

where (A l ob )  follows from (A 10a) after invoking the asymptotic approximation 
to Jo(mn-), which introduces an error of less than 5 %, and (A 1Oc) follows from 
(A lob) after invoking the approximation km = ?tn-/b. The approximation (A 10d) 
is adequate for kb < n- and 1 > b and implies that Zrs-Zf$ is not likely to be 
significant vis-&is either Z$!)or 2,. It is true that Z,, - Zi:) achieves large values 
as I/b -+ 0,  but then it is only of the order of 1 0-2(kb)2 2;:) and introduces less 
than a 10 % error (for kb < n-); moreover, the effects of the canal vanish with I/b. 
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